J. DIFFERENTIAL GEOMETRY
9 (1574) 97-108

MODELS OF THE RIEMANNIAN MANIFOLDS 0
IN THE LORENTZIAN 4-SPACE

MASAO MAEDA & TOMINOSUKE OTSUKI

1. Introduction

We denote by O? the 2-dimensional Riemannian manifold defined on the
unit disk D?: u® + v* < 1 in the uv-plane with the following metric:

(1.1) ds*=(1 — u? — ) (1 — vHdu® + 2uvdudy + (1 — w)dv?} ,

which is called the Otsuki manifold (of type number »n) following W. Y.
Hsiang and H. B. Lawson who treated it in [3] for any integer #» > 2 and in
particular for the case where n = 2. The second auther of this paper studied
it about the angular periodicity of geodesics in [4], [5] and [6].

On the other hand, O? is the hyperbolic plane H? of curvature —1, and (1.1)
is the metric described in the Cayley-Klein’s model of H?. O} is the hemi-
sphere: #* 4+ v 4- w?* = 1 and w > 0, and (1.1) is the metric described in the
plane of the equator: w = Q through the orthogonal projection.

As is well known, some part of H* but not whole plane can be represented
as a surface of revolution in the Euclidean 3-space E®. In the present paper,
we shall show that O (n > 1) can be represented as a surface of revolution in
E? for the part: u* + v* < (2n — 1)/n®, and the whole space can be done as
such a surface in the Lorentzian 4-space.

2. Preliminaries
Putting u = r cos 8, v = rsin 4, we can write (1.1) as
2.1 ds* = (1 — )4y 4 r’(1 — rA)*'de

which shows that the metric (1.1) is invariant under the group of rotations
around the origin of D
Putting £ = (1 — rH™*?and G = r*(1 — "7, from

<= —mlE(A 50

we can obtain the Gaussian curvature K of O, namely,
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2.2) K=Q0Qn~1—nd{1 - )",

which leads immediately to

Proposition 1. Q2 is of positive Gaussian curvature for n > 1, and of
negative Gaussian curvature for 0 < n < §.

Next, we denote the length of curve r = a by a). Then

2.3) @) = 27a(l — a@)»v

from which we can easily obtain
Proposition 2. If n > 1, then l(a) is maximal when a = n™%, and l(n"%) =
2z(ne,_))"%, where e,_, = [1 + 1/(n — D]*".
3. A representation of O in E*

In the following we suppose n > 1. In the Euclidean 3-space E* with
canonical coordinates x, y, z, let us consider a smooth surface of revolution
M? given by

(3.1 D = {(f(z) cos 8, f(z) sin 4, z) .
The induced Riemannian metric on M? from E° is

(3.2) ds* = {1 + F@Yz + (a6

where z, § are considered as local coordinates of M2,

Using the polar coordinates r,# of R? regarded as an E?, we consider a
mapping from a neighborhood of the origin of R* to M?*: O2 > (r,0) — (2,6)
M?, given by

(3.3) z=0().

Then from (2.1) and (3.2) it follows that this mapping is isometric if and only
if the following equations are satisfied :

(3.4 (1 =" = {1 + (eI’ (),

(3.5) 21— At = (o).
Since we may suppose f > 0, from (3.5) we get

(3.6) o) = r(1 — v .

Differentiating (3.6), we have

(3.7) fl(gg(r))% = (1 — =91 — nr) |
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and substitution of this in (3.4) gives

(dp/dr)? = r*(1 — ™3 (r) ,
where
(3.8) Ar) =2n — 1 — n¥r?.

Since we may suppose that ¢(r) is monotone increasing, we obtain

(3.9 o) = L (1 — PF2/2Ddt  for0<r< L/?__’Zf_l .
Now let
(3.10) r= (2
be the inverse function of p(r). Then (3.6) implies
(3.11) @) = $@{1 — GERYPF .
Finally, putting
(3.12) o) =a, oWIn—1/n)=b,
we obtain
i ol
Furthermore from (3.7), (3.8) and (3.9) it follows that
(3.14) F@) = (0 = mrGe)E,
(3.15) fO =+, fl@d=0, f(b)= —cw.

Thus we have

Theorem 1. O2 can be represented as a surface of revolution: (f(z) cos @,
f(D)sing,z)in BB for 0 < r < v2n — 1/n, where z = o(r) and {(z) are given
by (3.9), (3.10) and (3.11).

Remark. The profile curve & of the surface of revolution in Theorem 1 is
given by
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(3.16) x = r(l — -t z= o).

Let k, (= the curvature of ¥) and &, be the principal curvatures of this surface.
Then as is well known

ki = —f"{1 + (F @)}, ky = x7H1 + (F ()72 .
By using (3.14) and (3.16), we can easily obtain
2n — 1 — nrt K — V)

: = 1 — F2)nee

3.17 k, = —,
(3-17) A — 220

2

from which follow

limk = + oo, limk,=0.

z2=h z2—b

4. A surface theory in the Lorentzian 3-space

In this section, for our purpose we give a brief theory of surfaces in the
Lorentzian 3-space.

Let R® denote the Cartesian product R X R X R where R is the set of real
numbers. On R® with the canonical coordinates x,, x,, X;, the Euclidean 3-space
E?® and the Lorentzian 3-space L® are defined by the metrices

E*: ds* = dxi + dx} + dx}, L*: ds® = dxi + dxi — dxi,

respectively. We denote the inner products, in £° and L?, of any two vectors
X =) X.8/ox; and Y = >, Y,3/dx; by

4.1) X,Y)= X7, + XY, + X,Y,,

4.2) X, Y)=XY + X,)Y, - X)Y;,

respectively, denote the symmetry of E* with respect to the x,x,-plane by ¢,
and extend ¢ to vectors as follows:

(4.3) ) o(X) = X,8/0x, + X,0/0x, — X;0/8x, .
Then we have
(4.4) X, Y) =X, o(Y) = (pX),Y) .

Let X A Y be the outer product of X and Y in E?, that is,

XAY =(XY, - X,Y)-L + (XY, — Xle)i
ax, 0x,
8

+ (XY, — X,Y)
0x,
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and let {X, Y} denote the space spanned by X and Y. Then we obtain easily

Lemmal. oX NY)e{X,Y}if and only if X N\Y is a null vector of L*.

Now let M be a surface in R®, and M, the tangent space at x e M. Let N,
and N . De the normal tangent spaces of M, in E* and L3 and denote the
normal bundles of M in E* and L* by N(M) and N, respectively. By virtue
of (4.4), we have immediately

Lemma 2. N, = o(N,).

A point of x e M is said to be regular if N, is linearly independent of M,.
For any tangent vector fields X, Y ¢ the set I'(T(M)) of smooth cross sections
of the tangent bundle T(M) of M, we have

where d»Y is the ordinary derivative of Y with respect to X in R*, ;Y ¢
(M), and T5Y e T'(N(M)).

Supposing every point of M is regular in L*, we have the following formula
with respect to L* analogous to (4.5):

(4.6) dyY =F,Y +T,Y, PxYeP(OWM), T,YecI'(NM).

Let (x, ,, ,, €;) be an orthonormal frame of E® at x ¢ M such that ¢, e Ny.
Then

4.7n TyY = A(X,Y)e, ,

where A(X,7Y) is the 2nd fundamental form of M in E°.
Proposition 3. For any X, Y ¢ I'(T(M)) at any regular point of M in L3,

we have
4.8) PoY =ryY — A% pise
{es, ey
“.9) Toy = A% o
{ey e
(4.10) Proj ple;) = ey, ee, + {e,,e0e, .
Proof. At a regular point, we easily obtain
(4.11) e; = —Proj ole;) /{es, e5) + pley)/<es, 5> .

Substitution of (4.11) in (4.5) gives
dyY = VY + AX,Y) {—Proj ¢(e;) + ole}/{es e ,
which implies (4.8) and (4.9). q.e.d.
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Now let us consider a surface of revolution around the x;-axis in L® given by
4.12) p = (xcos d, xsin g, f(x)) .
Take the orthonormal frame (p, e,, ¢,, ¢;) of E*® given by

e, =1+ %t (cosb,siné, ),

e, = (—sin @, cos 6, 0) = ole,) ,

e, = (1 + /)~ 3(—f cosd, —f sinb, 1),
ole) = (1 + )7 —f cos§, —f sin 6, ~1),

from which we obtain

4.13) {ej, e = —~1/p= ~Le,e)>, lep ey =1,
where
4.14) p=0+/1 —=.

so that (e,, e,, ¢(ey)) is an orthogonal basis of L?,
In the following, we consider the case where

4.15) el <1.

Then putting

4.16) é, = \/—ﬂ—el , € =¢, &= '\/—[797(33) ’

we see that (p, €, €,, &;) is an orthonormal frame of L? in the following sense:
<§1: §1> = <éz, §2> = _<é3, 53> =1,
<é1> 53> = <52> §3> = <§1’ éz> =0.

Proposition 4. For a surface M of revolution around the xsaxis in L*
with the profile curve x; = f(x,) such that |f'(x,)| < 1, its principal curvatures
k, and k, satisfy the following equations:

4.17) Ex = — %, , 22 = — %k, ,

where k, and k, are the principal curvatures of M considered as a surface in E*.

Proof. Let us compute the principal curvatures %, and %, of the surface M
in L* by means of the frame (p, &,, &,, &,) stated above. Define the 2nd funda-
mental form A(X,Y) of M in L? by

(4.18) T2Y = AX, Y)é, , X, Y e I(TMD)) .
From (4.9), (4.13), (4.16) and (4.18), it follows that
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(4.19) AX,Y) = —v/ AKX, Y) .

Putting

X=Xe + X,e,= X2 + Xz, Y=Ye + Ye, =Y + Y2,
we have

Xlznt‘!—%Xl: Xz_—'Xzy Y1=ﬂ_i’Y1, Y2=Y2.

Thus by noticing that A(X,Y) = kXY, + kX,Y,, AX,Y) = L XY, +
k,X,Y,, from (4.19) we can easily obtain (4.17).

Propasition 5. Let M be a surface in L? such that every point is regular.
With respect to an orthonormal frame (p, é,, &,,€,) of M in L*, we have

(4-20) Rmz = /Iu/‘izz - /Ilzlez ’

where /Iaﬁ = A&, é,).
Proof. Forany X,Y,Z ¢ I'(T(M)), we have

dyY =VyY + AX,Y)é,, RX,VNZ:=VilyZ — V¥ yZ — VixrniZ,

where R is the curvature tensor of M in L*. From the above first equation follow
immediately

dydyZ = F3¥yZ + A(Y,Z)dyé, (modé,), dyé, e I'(T(M)) .

Substitution of these equations in the identity dydyZ — dydxZ — dixy y1Z = 0O
gives

(4.21) RX,VZ = AKX, 2)dve, — A(Y, 2)dyé, .
On the other hand, we have
(de 85, E5p = —{&5,d5,8;) = —<(&,;, Téaéﬁ>
== —/Z(éan é3)<é3> é3> = Aa,ﬂ -

Hence we can easily obtain (4.10) from R,,,,: = (R(é,, &,)&,, &,>.
Using Proposition 5 for the surface in Proposition 4, we obtain

K= —RIZIZ = —*"Infizz = _’I‘IEI‘I;Z = —pkik,,

where K is the Gaussian curvature of M.
Supposing the curve x, = f(x,) as is shown in Fig. 1, i.e.,

(4.22) -1 <flx) <0, f(x)>0,

we have
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X3

Xy = Jx)

o] % -
Fig. 1
]<1 — f//(l + f/Z)—B/Z R k2 — f/(l + f/Z)—I/Z/.x1 R
and therefore

(4.23) R = —ff"Q — 97%/x, .

5. A representation of O in L*

We showed in § 3 that the subdomain of 02 (0 < r < +/2n — 1 /n) is repre-
sented as a surface of revolution in E*, but we could not extend it over

r = +/2n — 1/n. In this section, we shall do it in the Lorentzian 4-space
L* (D E®) defined by the metric:

5.1) ds® = dx* + dy* + dz? — aw?

on R* with the canonical coordinates x, y, z, w as a surface of revolution around
the zw-plane.

Using the complex coordinate y = u + iv on D?, we can write the metric
(1.1) of 0% as

(5.2) ds* = L(1 — yp)~*{p%dy* + 2Q2 — 9Pdpdy + 7'd7*} .

Putting & = x + iy and { = z + iw, by Theorem 1 we can write the represen-
tation of O% (0 < r < +/2n — 1/n) in E* C L' as

(5.3) &= 77(1 _ 7}7‘7)’}(71—1) , ¢ = J.or Z(l _ zZ)i(n—3)4/;2—(—z)dz ,

where E° is considered as a hypersurface of L* defined by w = 0.
Noticing the expressions of the righthand side of (5.3), we define a mapping

O (W2n = 1/n<r<1)—L*cCL!
given by

G g=pQ—gpro,  C=b+if Q- HEoy =TI,

where L? is given by z = b ((3.12)) in L*.
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Theorem 2. The mapping (5.4) is an isometric imbedding of 0% (¥2n — 1/n
< r <1)into L.
Proof. From (5.3) an elementary calculation gives

dgd + didg = (1 — )7y + 22 — y)dpds + 7'd7% .

Since in L, (5.1) can be written as ds*> = Re (d&d€ + dgdl), from (5.2) it thus
follows that (5.4) is an isometric immersion of O2 (v2n — 1 /n < r<1)in L
We can easily see that (5.4) is one-to-one. q.e.d.

Now, the first equation of (5.4) shows that the image of the mapping (5.4)
is a surface of revolution in L* around the zw-plane. The profile curve of the
surface in L® is given by

(5.5 x=r(l — iD= J (1 — 2= "2Dd1 .

YIn-1/n

Differentiating (5.5) we obtain

5.6 w _ =)
dx 1 — nr
dw _ 2n — 1 — nr?
(5.7) 7 N C RO g ey T S

Since n > 1 and 1 — ar? < 0 for +/2n — 1/n <7, (5.6) and (5.7) imply

aw| aw|

= = —1,
dx lr=vzzim ’ dx =1
oY e @ VI =1
Y >0, —1<Mco ¥ =lo,cn,
dax® dx n

The last inequality shows that the profile curve satisfies the condition in
Proposition 4. By means of (5.5), (5.6), (5,7) and (2.2), and using w(x) for
f(x;) in (4.23) we can easily see that in L* the Gaussian curvature K of the
surface of revolution is equal to the Gaussian curvature K of O5.

Thus putting (5.3) and (5.4) together we get an isometric imbedding of OZ
into L*, the image of which is a surface of revolution around the zw-plane
with the profile curve ¥ = ¢, U ¢, where %, and %, are given by

x=r1— rZ)J_r(n—l) ,
(5.9) @:dz = ofr) = J "W — T

w=0, O<r<v2n—1/n),
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x = r(l — rAte-v z=">b,
(5.10) %,:

J (1 — P9y a0d: (L/_z.”_*_l <r< 1) .
Van=i/n n

1 1(1 _ zz)g(u-:),J_ 1(1) dt
Van-i/n

Proposition 6. The profile curve € = €, U %, is C* and not C*. The. sub-
arcs €, and €, are C°.
Proof. We have

i‘x_ = (1 — (1 — PR

dr
ax —(n — Dr(3 — nar)(1 — -9 |
ar®

For ,, we have

4z _ ey, 42 A= r2yr2-9p(r)

dr ar V() ’
where
(5.11) PO) =2n — 1 — (4n2 — 5n + 2r° + r¥(n — 1)r .
Since P(r)|,_vz=i)n = —@n — D(n — 1)}/n? < 0,
we get
.12) % 40, 42, _ asr_)ﬂ:}__o.
dr I n
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Next, for €, we have

aw _ _ Ew (1 — ro)Er=ap(y)
27— (1 — Zir(n3>/_k , - ,
dr ( ) @) dr? v —a(r)

so that

dzw-—>+oo asr-—>.l/_2_rl__.-_1+0_
dar’ n

.13 P _, Lo,
dr

These relations imply the proposition.

In conclusion, we obtain

Theorem 3. The surface of revolition in L* around the zw-plane with the
profile curve € = €, U €, given by (5.9) and (5.10) is a C*-model of O? and
the parts corresponding t0 €, and %, are analytic models of O (0 <r <
V2n —1/n) and O (vV2n — 1/n < r < 1), respectively.

Examples. 1) When n = 2, ¥, and ¥, are given by

S’x:r‘\/l—rz,
%,

Z——{ﬁ—«/l—r%/s 4r2}+ g W=7+ /3 -3F

2+ 43 ’

lw:O, for0<r<iv3 .
and
1 1) 1 24+ 43
= —_- — —-—100———-——,
? (‘/_ 2 4 1+ 42
b=1+3 —1log2 + v/ 3);
=ry]l —rt, z=15b,

x
Frdw=ir — VT = PV4r =3 — Lsin7'2/1 — 72,
foriv/3 <r<1.

%: x=r(l—1r), z=71_{5F—(5 9%, w=0,
for0<r<+v5/3,
or

4 5/5 )2/3} {5 (5«/5 )2/3}1/2
= {— - — — =z 5
=i+ (- Hs - 5%
for 0 < z < 5v/5/27,
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and

1 545
= Leys oy, b= :
4= 5 v2) 27

%: x=r(l—r), z=b, w=(0—5/9%, for/5/3<r<1,

or
x = (4/9 — w")(5/9 + w2, for 0 < w < 8/27.
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